题目内容
【题目】设数列{an}的前项和为Sn , 且Sn= ,{bn}为等差数列,且a1=b1 , a2(b2﹣b1)=a1 .
(1)求数列{an}和{bn}通项公式;
(2)设 ,求数列{cn}的前n项和Tn .
【答案】
(1)解:当n=1时,a1=S1=1,
当n≥2时,an=Sn﹣Sn﹣1=( )﹣( )= ,
经验证当n=1时,此式也成立,所以 ,从而b1=a1=1, ,
又因为{bn}为等差数列,所以公差d=2,∴bn=1+(n﹣1)2=2n﹣1,
故数列{an}和{bn}通项公式分别为: ,bn=2n﹣1.
(2)解:由(1)可知 ,
所以 +(2n﹣1)2n﹣1 ①
①×2得 +(2n﹣3)2n﹣1+(2n﹣1)2n ②
①﹣②得: ﹣(2n﹣1)2n
= =1+2n+1﹣4﹣(2n﹣1)2n=﹣3﹣(2n﹣3)2n.
∴数列{cn}的前n项和 .
【解析】(1)由 可求数列{an}的通项公式,进而可求数列{bn}通项公式;(2)由(1)可知 ,故可用错位相减法来求数列的前n项和.
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:或;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
练习册系列答案
相关题目
【题目】福州市某大型家电商场为了使每月销售空调和冰箱获得的总利润达到最大,对某月即将出售的空调和冰箱进行了相关调查,得出下表:
资金 | 每台空调或冰箱所需资金(百元) | 月资金最多供应量(百元) | |
空调 | 冰箱 | ||
进货成本 | 30 | 20 | 300 |
工人工资 | 5 | 10 | 110 |
每台利润 | 6 | 8 |
问:该商场如果根据调查得来的数据,应该怎样确定空调和冰箱的月供应量,才能使商场获得的总利润最大?总利润的最大值为多少元?