题目内容

如图,在正三棱柱ABC-A1B1C1中,E∈BB1截面A1EC⊥侧面AC1.

(Ⅰ)求证:BE=EB1;

(Ⅱ)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.

注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).

(Ⅰ)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.

① ∵                                     

 ∴EG⊥侧面AC1;取AC的中点F,连结BF,FG,由AB=BC得BF⊥AC,

② ∵                             

 ∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.

③ ∵                      

 ∴BE∥FG,四边形BEGF是平行四边形,BE=FG,

④ ∵                            

 ∴FG∥AA1,△AA1C∽△FGC,

⑤ ∵                    

,故

解 (Ⅰ)①∵面A1EC⊥侧面AC1,   ②∵面ABC⊥侧面AC1,                                                              ③∵BE∥侧面AC1,       ④∵BE∥AA1,                                                                                       ⑤∵AF=FC,                                                                           

(Ⅱ)解:分别延长CE、C1B1交于点D,连结A1D.

∵CC1⊥面A1C1B1,即A1C1是A1C在平面A1C1D上的射影,根据三垂线定理得DA1⊥A1C,

所以∠CA1C1所求二面角的平面角.                                         ∵CC1=AA1=A1B1=A1C1,∠A1C1C=90°,

∴∠CA1C1=45°,即所求二面角为45°.                                   

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网