题目内容
6.设f(x)=|lgx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则实数a的取值范围是( )A. | $({0,\frac{1}{e}})$ | B. | $({\frac{lg2}{2},\frac{lge}{e}})$ | C. | $({\frac{lg2}{2},e})$ | D. | $({0,\frac{lg2}{2}})$ |
分析 转化函数的零点为方程的根,利用数形结合,推出3个零点满足的情况,利用函数的导数求出切线的斜率,推出结果即可.
解答 解:函数g(x)=f(x)-ax在区间(0,4)上有三个零点,
就是g(x)=f(x)-ax=0在区间(0,4)上有三个根,
也就是f(x)=ax的根有3个,
即两个函数y=f(x)与y=ax图象在区间(0,4)上的交点个数为3个.
如图:由题意以及函数的图象可知函数有3个零点,直线y=ax过A,与l之间时,满足题意.
A(4,lg4),kOA=$\frac{lg2}{2}$.
设l与y=lgx的切点为(t,f(t)),
可得y′=$\frac{1}{xln10}$,切线的斜率为:$\frac{1}{tln10}$=$\frac{f(t)}{t}$=$\frac{lgt}{t}$,即lgt=lge,t=e.
可得切线l的斜率为:$\frac{lge}{e}$,
a∈$(\frac{lg2}{2},\frac{lge}{e})$.
故选:B.
点评 本题考查函数的零点与方程的根的关系,考查数形结合转化思想的应用,是中档题.
练习册系列答案
相关题目
14.(x-$\frac{1}{2x}$)6的展开式中常数项为( )
A. | $\frac{15}{16}$ | B. | -$\frac{15}{16}$ | C. | $\frac{5}{2}$ | D. | -$\frac{5}{2}$ |
11.如图,水平放置的几何体的三视图,其俯视图为图中含有实线和虚线的矩形,侧(左)视图为边长为3,高为$\sqrt{3}$的矩形,则该几何体的表面积为( )
A. | 30+6$\sqrt{3}$ | B. | 6+15$\sqrt{3}$ | C. | 21$\sqrt{3}$ | D. | 42 |