题目内容

设F(1,0),点M在x轴上,点P在y轴上,且
(1)当点P在y轴上运动时,求点N的轨迹C的方程;
(2)设A(x1,y1),B(x2,y2),D(x3,y3)是曲线C上的点,且成等差数列,当AD的垂直平分线与x轴交于点E(3,0)时,求点B的坐标.
【答案】分析:(1)根据,可得P为MN的中点,利用,可得,从而可得点N的轨迹C的方程;
(2)先根据抛物线的定义可知,利用成等差数列,可得x1+x3=2x2,确定AD的中垂线方程,利用AD的中点在直线上,即可求得点B的坐标.
解答:解:(1)设N(x,y),则由得P为MN的中点,
所以…(1分)
,∴
,…(3分)
∴y2=4x(x≠0)…(5分)
(2)由(1)知F(1,0)为曲线C的焦点,由抛物线定义知抛物线上任一点P(x,y)到F的距离等于其到准线的距离,即…(6分)

成等差数列
∴x1+x3=2x2…(7分)
∵直线AD的斜率…(9分)
∴AD的中垂线方程为…(10分)
又AD的中点在直线上,代入上式,得…(11分)
故所求点B的坐标为(1,±2)…(12分)
点评:本题考查求轨迹方程,考查向量知识的运用,考查数列知识,解题的关键是用好向量,挖掘隐含,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网