题目内容

14.已知数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),则a1a2a3…a2012的值为(  )
A.2B.-3C.$-\frac{1}{2}$D.1

分析 通过计算,找出该数列的周期,进而计算可得结论.

解答 解:∵a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),
∴a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=$\frac{1+2}{1-2}$=-3,
a3=$\frac{1+{a}_{2}}{1-{a}_{2}}$=$\frac{1-3}{1+3}$=-$\frac{1}{2}$,
a4=$\frac{1+{a}_{3}}{1-{a}_{3}}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,
a5=$\frac{1+{a}_{4}}{1-{a}_{4}}$=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,

由此可得规律:从第1项开始,按2,-3,-$\frac{1}{2}$,$\frac{1}{3}$循环,每4个循环一次,
∵2012=503×4,
∴a1a2a3…a2012=[2×(-3)×(-$\frac{1}{2}$)×$\frac{1}{3}$]503=1,
故选:D.

点评 本题考查数列的周期性,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网