题目内容
3.sin$\frac{π}{12}$cos$\frac{π}{12}$的值为( )A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | -$\frac{\sqrt{3}}{4}$ |
分析 利用二倍角的正弦函数公式化简后由特殊角的三角函数值即可得解.
解答 解:sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{2}$sin$\frac{π}{6}$=$\frac{1}{4}$.
故选:A.
点评 本题主要考查了二倍角的正弦函数公式,特殊角的三角函数值的应用,属于基本知识的考查.
练习册系列答案
相关题目
14.已知数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),则a1a2a3…a2012的值为( )
A. | 2 | B. | -3 | C. | $-\frac{1}{2}$ | D. | 1 |
15.已知定义在R上的函数f(x)是奇函数,且f(2)=0,当x>0时有x•f′(x)+f(x)<0,则不等式f(x)<0的解集是( )
A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0)∪(0,2) | D. | (-2,2)∪(2,+∞) |