题目内容
8.在△ABC中,∠A,B,C所对的边分别为a,b,c,满足b=2a,∠A=25°,求△ABC的解的个数.分析 由题意得:bsinA=bsin25°<bsin30°=a,即可判断出△ABC的解的个数.
解答 解:因为b=2a,∠A=25°,
所以bsinA=bsin25°<bsin30°=2a×$\frac{1}{2}$=a<b=2a,
所以△ABC的解的个数是两个.
点评 本题主要考查三角形存在个数的条件,比较基础.
练习册系列答案
相关题目
3.在一次考试中,5名同学数学、物理成绩如表所示:
(Ⅰ)根据表中数据,求物理分y对数学分x的回归方程.
(Ⅱ)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及期望.(附:回归方程$\widehat{y}$=bx+a中,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$)
学生 | A | B | C | D | E |
数学(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(Ⅱ)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及期望.(附:回归方程$\widehat{y}$=bx+a中,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$)
13.已知y=ksinx+1,x∈R,则y的最大值为$\left\{\begin{array}{l}{k+1,k>0}\\{1,k=0}\\{-k+1,k<0}\end{array}\right.$.
20.已知x>2,则x+$\frac{4}{x-2}$的最小值为( )
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
14.已知数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),则a1a2a3…a2012的值为( )
A. | 2 | B. | -3 | C. | $-\frac{1}{2}$ | D. | 1 |