题目内容
【题目】下列命题正确的是( )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行
【答案】C
【解析】A、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故A错误;
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,故B错误;
C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C正确;
D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D.
故选C.
【考点精析】本题主要考查了命题的真假判断与应用和空间中直线与平面之间的位置关系的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能正确解答此题.
练习册系列答案
相关题目