题目内容
【题目】为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.
组号 | 分组 | 回答正确的人数 | 回答正确的人数 |
第1组 | [15,25) | a | 0.5 |
第2组 | [25,35) | 18 | x |
第3组 | [35,45) | b | 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 | y |
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
【答案】
(1)解:由频率表中第4组数据可知,第4组总人数为 ,
再结合频率分布直方图可知n= ,
∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,
;
(2)解:因为第2,3,4组回答正确的人数共有54人,
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组: 人;第3组: 人;第4组: 人
(3)解:设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.
则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),
(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,
其中恰好没有第3组人共3个基本事件,
∴所抽取的人中恰好没有第3组人的概率是:
【解析】(1)由频率表中第4组数据可知,第4组的频数为25,再结合频率分布直方图求得n,a,b,x,y的值;(2)因为第2,3,4组回答正确的人数共有54人,抽取比例为 ,根据抽取比例计算第2,3,4组每组应抽取的人数;(3)列出从6人中随机抽取2人的所有可能的结果,共15基本事件,其中恰好没有第3组人共3个基本事件,利用古典概型概率公式计算.
【考点精析】本题主要考查了频率分布直方图的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息才能正确解答此题.