题目内容
某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校,求抽取的2所学校均为小学的概率.
(1)从小学、中学、大学中分别抽取的学校数目为3、2、1;
(2)抽取的2所学校均为小学的概率为.
解析试题分析:(1)由分层抽样易求从小学、中学、大学中分别抽取的学校数目为3、2、1;
(2)先列举出从抽取的6所学校中随机抽取2所学校的所有可能,找出抽取的2所学校均为小学可能,即可求出抽取的2所学校均为小学的概率.
试题解析:(1)从小学、中学、大学中分别抽取的学校数目之比为,得:从小学、中学、大学中分别抽取的学校数目为.
(2)设抽取的6所学校中小学为,中学位,大学为;抽取2所学校的结果为: 共15种;抽取的2所学校均为小学的结果为共3种,抽取的2所学校均为小学的概率为.
考点:分层抽样、古典概型.
练习册系列答案
相关题目
某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x,y,z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(2)在该样品的一等品中,随机抽取两件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
甲运动员
射击环数 | 频数 | 频率 |
7 | 10 | 0.1 |
8 | 10 | 0.1 |
9 | x | 0.45 |
10 | 35 | y |
合计 | 100 | 1 |
射击环数 | 频数 | 频率 |
7 | 8 | 0.1 |
8 | 12 | 0.15 |
9 | z | |
10 | | 0.35 |
合计 | 80 | 1 |
(1)求甲运动员射击1次击中10环的概率.
(2)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率.
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及E(ξ).