题目内容

如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,圆O是△BDE的外接圆.

(1)求证:AC是圆O的切线;
(2)如果AD=6,AE=6,求BC的长.
(1)见解析(2)4
(1)证明:连OE,∵BE⊥DE,
∴O点为BD的中点.
∵OB=OE,∴∠OEB=∠OBE.
∵∠OEC=∠OEB+∠CEB=∠OBE+∠CEB=∠CEB+∠CBE=90°,即OE⊥AC.
又E是AC与圆O的公共点,∴AC是圆O的切线.
(2)解:∵AE是圆的切线,∴∠AED=∠ABE.
又∠A共用,∴△ADE∽△AEB,
,即,解得AB=12,
∴圆O的半径为3.
又∵OE∥BC,∴,即,解得BC=4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网