题目内容
已知数列{an}的前n项和的公式是Sn=
(2n2+n).
(1)求证:{an}是等差数列,并求出它的首项和公差;
(2)记bn=sinan•sinan+1•sinan+2,求出数列{an•bn}的前n项和Tn.
π |
12 |
(1)求证:{an}是等差数列,并求出它的首项和公差;
(2)记bn=sinan•sinan+1•sinan+2,求出数列{an•bn}的前n项和Tn.
当n=1时,
当n≥2时,an=Sn-Sn-1=
(2n2+n)-
[2(n-1)2+(n-1)]=
(4n-1)
所以an=
(4n-1).an-a n-1=
,所以{an}是等差数列,它的首项为
和公差为
;
(2)b1=sina1•sina2•sina3=sin
sin
sin
=
×(-
)×(cos
-cos
)=
=
=
=
=-1,数列{bn}是等比数列,首项为
,公比为-1.
所以bn=
(-1)n-1,anbn=
(-1)n-1(4n-1).
错位相减法得Tn=
[1-(-1)n(4n+1)]
|
当n≥2时,an=Sn-Sn-1=
π |
12 |
π |
12 |
π |
12 |
所以an=
π |
12 |
π |
3 |
π |
4 |
π |
3 |
(2)b1=sina1•sina2•sina3=sin
π |
4 |
7π |
12 |
11π |
12 |
| ||
2 |
1 |
2 |
18π |
12 |
4π |
12 |
| ||
8 |
bn |
bn-1 |
sinan-2 |
sinan-1 |
sin(an-1+π) |
sinan-1 |
-sinan-1 |
sinan-1 |
| ||
8 |
所以bn=
| ||
8 |
| ||
96 |
错位相减法得Tn=
| ||
192 |
练习册系列答案
相关题目