题目内容

已知数列{an}的前n项和的公式是Sn=
π
12
(2n2+n)

(1)求证:{an}是等差数列,并求出它的首项和公差;
(2)记bn=sinan•sinan+1•sinan+2,求出数列{an•bn}的前n项和Tn
当n=1时,
a1=S1=
π
4

当n≥2时,an=Sn-Sn-1=
π
12
(2n2+n)-
π
12
[2(n-1)2+(n-1)]
=
π
12
(4n-1)

所以an=
π
12
(4n-1)
.an-a n-1=
π
3
,所以{an}是等差数列,它的首项为
π
4
和公差为
π
3

(2)b1=sina1•sina2•sina3=sin
π
4
sin
12
sin
11π
12
=
2
2
×(-
1
2
)×(cos
18π
12
-cos
12
)=
2
8

bn
bn-1
=
sinan-2
sinan-1
=
sin(an-1+π)
sinan-1
=
-sinan-1
sinan-1
=-1,数列{bn}是等比数列,首项为
2
8
,公比为-1.
所以bn=
2
8
(-1)n-1
,anbn=
2
π
96
(-1)n-1(4n-1)

错位相减法得Tn=
2
π
192
[1-(-1)n(4n+1)]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网