题目内容
求在点和处的切线方程。
点在函数的曲线上,因此过点的切线的斜率就是在处的函数值;
点不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线.切忌直接将,看作曲线上的点用导数求解。
即过点的切线的斜率为4,故切线为:.
设过点的切线的切点为,则切线的斜率为,又,
故,。
即切线的斜率为4或12,从而过点的切线为:
点不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线.切忌直接将,看作曲线上的点用导数求解。
即过点的切线的斜率为4,故切线为:.
设过点的切线的切点为,则切线的斜率为,又,
故,。
即切线的斜率为4或12,从而过点的切线为:
练习册系列答案
相关题目