题目内容
【题目】函数f(x)=Asin(x+)(A>0,>0,0<<)的部分图象如图所示,又函数g(x)=f(x+).
(1)求函数g(x)的单调增区间;
(2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.
【答案】(1);(2).
【解析】
(1)根据图象最值确定A,根据半个周期确定,根据最小值点确定,再根据诱导公式化简g(x),最后根据余弦函数性质求单调增区间;
(2)先求C,再根据正弦定理化边的关系,结合余弦定理解得,,最后根据三角形面积公式求结果.
(1)由函数的部分图象可得
,,即,则,
又函数图像过点 ,则,即,
又,即,
即,则
由,,得,,
所以函数的单调增区间为
(2)由,得,因为,所以,
所以,,
又,由正弦定理得①.
又,由余弦定理,得,即②.
由①②解得,. 所以的面积为.
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(3)从该校学生中随机调查60名学生,一周参加社区服务时间超过1小时的人数记为X,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,求X的分布列和数学期望.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2.
【题目】为阻隔新冠肺炎病毒,多地进行封城.封城一段时间后,有的人情绪波动不大,反应一般;也有的人情绪波动大,反应强烈.某社区为了解民众心理反应,随机调查了100位居民,得到数据如下表:
反应强烈 | 反应一般 | 合计 | |
男 | 20 | 20 | 40 |
女 | 45 | 15 | 60 |
合计 | 65 | 35 | 100 |
(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该社区的男性居民中随机抽取3位,记其中反应强烈的人数为X,求随机变量X的分布列和数学期望;
(2)根据调查数据,能否在犯错的概率不超过的前提下认为“反应强烈”与性别有关,并说明理由.
参考数据:
k |
(参考公式:,其中)