题目内容
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(3)从该校学生中随机调查60名学生,一周参加社区服务时间超过1小时的人数记为X,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,求X的分布列和数学期望.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2.
【答案】(1)n=48;m=8(2)没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关(3)详见解析
【解析】
(1)根据分层抽样方法,计算比例,即可求解;
(2)补全列联表,按照公式计算,根据独立性检验,可得结论;
(3)根据题意,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,计算概率为,符合二项分布,求出分布列,计算期望.
(1)根据分层抽样法,抽样比例为,
∴n=48;
∴m=48﹣20﹣8﹣12=8;
(2)根据题意完善2×2列联表,如下;
超过1小时 | 不超过1小时 | 合计 | |
男生 | 20 | 8 | 28 |
女生 | 12 | 8 | 20 |
合计 | 32 | 16 | 48 |
计算,
所以没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关;
(3)参加社区服务时间超过1小时的频率为,
用频率估计概率,从该校学生中随机调査60名学生,则X~B(60,),
所以,k=0,1,2,3,…,60;
.
练习册系列答案
相关题目