搜索
题目内容
已知椭圆
的
左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴, 直线AB交
轴于点P,若
,则椭圆的离心率是( )
A.
B.
C.
D.
试题答案
相关练习册答案
D
略
练习册系列答案
寒假作业江西教育出版社系列答案
愉快的寒假南京出版社系列答案
优化学习寒假20天系列答案
优等生快乐寒假云南人民出版社系列答案
优等生寒假作业云南人民出版社系列答案
赢在假期抢分计划寒假合肥工业大学出版社系列答案
赢在假期期末加寒假合肥工业大学出版社系列答案
赢在寒假期末冲刺王云南科技出版社系列答案
本土教辅赢在寒假高效假期总复习云南科技出版社系列答案
寒假作业新疆教育出版社系列答案
相关题目
给定椭圆C:
,称圆心在原点O、半径为
的圆是椭圆C的“伴椭圆” ,若椭圆C的一个焦点为
,其短轴上的一个端点到
距离为
;
(1)、求椭圆C的方程及其“伴椭圆”的方程;
(2)、若倾斜角为
的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长。
(3)、若点P是椭圆C“伴椭圆”上一动点,过点P作直线
,使得
与椭圆C都只有一个公共点,求证:
。
(本小题满分15分)
如图,椭圆
的中心在原点,焦点在
轴上,
分别是椭圆
的左、右焦点,
是椭圆短轴的一个端点,过
的直线
与椭圆交于
两点,
的面积为
,
的周长为
.
(1)求椭圆
的方程;
(2)设点
的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
((本小题满分12分)
已知椭圆
的左、右两个焦点为
,离心率为
,又抛物线
与椭圆
有公共焦点
.
(1)求椭圆和抛物线的方程;
(2)设直线
经过椭圆的左焦点
且与抛物线交于不同两点P、Q且满足
,求实数
的取值范围.
(本题满分12分)
已知点
P
(-1,
)是椭圆
E
:
(
)上一点,
F
1
、
F
2
分别是椭圆
E
的左、右焦点,
O
是坐标原点,
PF
1
⊥
x
轴.
(1)求椭圆
E
的方程;
(2)设
A
、
B
是椭圆
E
上两个动点,
(0<λ<4,且λ≠2).求证:直线
AB
的斜率等于椭圆
E
的离心率;
(3)在(2)的条件下,当△
PAB
面积取得最大值时,求λ的值.
(I)若椭圆的焦点为
,且经过点
,求椭圆的标准方程.
(II)求过点
的双曲线的标准方程.
椭圆
的短轴长是( )
A.
B. 2
C. 2
D.
4
椭圆
的一个焦点为
,则
等于
.
椭圆
的离心率为
,则
的值为 ( )
A.2
B.
C.2或
D.
或4
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总