题目内容

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大小;
(Ⅱ)若a=2,c=3,求sinC的值.

【答案】解:(Ⅰ)△ABC中,(2a﹣c)cosB=bcosC, 由正弦定理得(2sinA﹣sinC)cosB=sinBcosC;
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA.
∵0<A<π,
∴sinA≠0,
∴cosB=
又0<B<π,
∴B=
(Ⅱ)a=2,c=3,
由余弦定理得:b2=a2+c2﹣2accosB=22+32﹣2×2×3cos =7,
∴b=
再由正弦定理得
sinC= = =
【解析】(Ⅰ)由正弦定理化简条件中的等式,利用两角和的正弦值求出cosB的值,从而求出B的大小;(Ⅱ)根据余弦定理求出b的值,再由正弦定理求出sinC的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网