ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨sin¦È£¬1£©£¬$\overrightarrow{b}$=£¨sec¦È£¬1£©£¬t=$\overrightarrow{a}$•$\overrightarrow{b}$£¬¹ØÓÚʵÊýxµÄ²»µÈʽ|x-$\frac{{t}^{2}}{2}$|¡Ü$\frac{£¨t-2£©^{2}}{2}$£¬x2-3tx+2£¨3t-2£©¡Ü0µÄ½â¼¯·Ö±ðΪM£¬N£¬ÇÒM¡ÉN¡Ù∅£¬Çó½Ç¦ÈµÄÈ¡Öµ·¶Î§£®·ÖÎö ÀûÓÃÊýÁ¿»ýÔËËãÐÔÖʿɵãºt=$\overrightarrow{a}$•$\overrightarrow{b}$=tan¦È+1£®ÓɹØÓÚʵÊýxµÄ²»µÈʽ|x-$\frac{{t}^{2}}{2}$|¡Ü$\frac{£¨t-2£©^{2}}{2}$£¬¿ÉµÃ2t-2¡Üx¡Üt2-2t+2£®µ±tan¦È¡Ù1ʱ£¬M=[2tan¦È£¬tan2¦È+1]£¬µ±tan¦È=1ʱ£¬M={2}£®ÓÉx2-3tx+2£¨3t-2£©¡Ü0£¬¶Ôt¼°tan¦È·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö½â¼¯£®Í¨¹ý·ÖÀàÌÖÂ۵õ½tan¦ÈµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£ºt=$\overrightarrow{a}$•$\overrightarrow{b}$=sin¦Èsec¦È+1=tan¦È+1£¬
¹ØÓÚʵÊýxµÄ²»µÈʽ|x-$\frac{{t}^{2}}{2}$|¡Ü$\frac{£¨t-2£©^{2}}{2}$£¬¡à$-\frac{£¨t-2£©^{2}}{2}$+$\frac{{t}^{2}}{2}$¡Üx¡Ü$\frac{£¨t-2£©^{2}}{2}$+$\frac{{t}^{2}}{2}$£®
»¯Îª2t-2¡Üx¡Üt2-2t+2£®
¡àµ±tan¦È¡Ù1ʱ£¬M=[2tan¦È£¬tan2¦È+1]£¬
¡àµ±tan¦È=1ʱ£¬M={2}£®
ÓÉx2-3tx+2£¨3t-2£©¡Ü0£¬
µ±$t£¾\frac{4}{3}$ʱ£¬½âµÃ2¡Üx¡Ü3t-2£¬
¡àµ±tan¦È£¾$\frac{1}{3}$ʱ£¬N=[2£¬3tan¦È+1]£»
µ±t=$\frac{4}{3}$¼´tan¦È=$\frac{1}{3}$ʱ£¬N={2}£»
µ±t$£¼\frac{4}{3}$£¬¼´tan¦È£¼$\frac{1}{3}$ʱ£¬½âµÃ3t-2¡Üx¡Ü2£¬Òò´ËN=[3tan¦È+1£¬2]£®
¢Ùµ±tan¦È¡Ý3ʱ£¬¡ßtan2¦È+1¡Ý3tan¦È+1£¬¡àM¡ÉN=[2tan¦È£¬3tan¦È+1]¡Ù∅£®
¢Úµ±1£¼tan¦È£¼3ʱ£¬¿ÉµÃM¡ÉN=[2tan¦È£¬tan2¦È+1]¡Ù∅£®
¢Ûµ±tan¦È=1ʱ£¬¿ÉµÃM¡ÉN={2}¡Ù∅£®
¢Üµ±$\frac{1}{3}$¡Ütan¦È£¼1ʱ£¬¿ÉµÃM¡ÉN=∅£¬ÉáÈ¥£®
¢Ýµ±0£¼tan¦È£¼$\frac{1}{3}$ʱ£¬¿ÉµÃM¡ÉN=∅£¬ÉáÈ¥£®
¢Þµ±tan¦È=0ʱ£¬¿ÉµÃM¡ÉN={1}£®
¢ßµ±-1¡Ütan¦È£¼0ʱ£¬¿ÉµÃM¡ÉN=[2tan¦È£¬tan2¦È+1]¡Ù∅£®
¢àµ±tan¦È£¼-1ʱ£¬¿ÉµÃM¡ÉN=[2tan¦È£¬2]¡Ù∅£®
×ÛÉϿɵãºtan¦È¡Ý1»òtan¦È¡Ü0£®
¡à½Ç¦ÈµÄÈ¡Öµ·¶Î§Îª$£¨k¦Ð-\frac{¦Ð}{2}£¬k¦Ð]$¡È$[k¦Ð+\frac{¦Ð}{4}£¬k¦Ð+\frac{¦Ð}{2}£©$£¨k¡ÊZ£©£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁ¿»ýÔËËãÐÔÖÊ¡¢¾ø¶ÔÖµ²»µÈʽÓëÒ»Ôª¶þ´Î²»µÈʽµÄ½â·¨¡¢¼¯ºÏµÄÔËËã¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | 3+$\sqrt{3}$ | B£® | 3-$\sqrt{3}$ | C£® | 3+$\sqrt{7}$ | D£® | 3-$\sqrt{7}$ |
A£® | {0£¬2£¬-2} | B£® | {0£¬2} | C£® | {0£¬2£¬-2£¬2i} | D£® | {0£¬2£¬-2£¬2i£¬-2i} |
A£® | x-y+1=0 | B£® | x+y-1=0 | C£® | x-y-1=0 | D£® | x+y+1=0 |
A£® | $\frac{\sqrt{6}}{4}$ | B£® | $\frac{\sqrt{7}}{2}$ | C£® | $\frac{\sqrt{6}}{2}$ |