题目内容
【题目】在本节,我们介绍了命题的否定的概念,知道一个命题的否定仍是一个命题,它和原先的命题只能一真一假,不能同真或同假.在数学中,有很多“若p,则q”形式的命题,有的是真命题,有的是假命题,例如:
①若,则;(假命题)
②若四边形为等腰梯形,则这个四边形的对角线相等.(真命题)
这里,命题①②都是省略了量词的全称量词命题.
(1)有人认为,①的否定是“若,则”,②的否定是“若四边形为等腰梯形,则这个四边形的对角线不相等”.你认为对吗?如果不对,请你正确地写出命题①②的否定.
(2)请你列举几个“若p,则q”形式的省略了量词的全称量词命题,分别写出它们的否定,并判断真假.
【答案】(1)不对,见解析(2)见解析
【解析】
(1)因为省略了量词的全称量词命题,故补全全称量词再判定即可.
(2)根据初中小学学过的数与形的知识点举例即可.
解: (1)不对.①的否定:存在;②的否定:存在一个四边形为等腰梯形,它的对角线不相等.
(2)命题1:矩形的对角线相等,是真命题;它的否定是:存在一个矩形,它的对角线不相等,是假命题.
命题2:实数的平方是正数,是假命题;它的否定:存在一个实数,它的平方不是正数,是真命题.
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:
【题目】某企业生产甲、乙两种产品均需要,两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲 | 乙 | 原料限额 | |
(吨) | 3 | 2 | 10 |
(吨) | 1 | 2 | 6 |
A. 10万元B. 12万元C. 13万元D. 14万元