题目内容

11.已知α∈(π,$\frac{3}{2}$π),cosα=-$\frac{4}{5}$,则tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

分析 由α的范围及cosα的值,利用同角三角函数间的基本关系求出sinα的值,即可求出tanα的值.

解答 解:∵α∈(π,$\frac{3}{2}$π),cosα=-$\frac{4}{5}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{3}{5}$,
则tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,
故选:B.

点评 此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网