题目内容
已知实数
满足
,
,设函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303028661063.png)
(1)当
时,求
的极小值;
(2)若函数
(
)的极小值点与
的极小值点相同,求证:
的极大值小于等于![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302991341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302804283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302819507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302835377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303028661063.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302882386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302897463.png)
(2)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303029291068.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302944449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302897463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302975466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302991341.png)
(1)
;(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303007368.png)
试题分析:(1)把
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303053381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303069641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303085669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303069641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302975466.png)
试题解析:(Ⅰ) 解: 当a=2时,f ′(x)=x2-3x+2=(x-1)(x-2)
列表如下:
x | (-![]() ![]() | 1 | (1,2) | 2 | (2,+![]() |
f ′(x) | + | 0 | - | 0 | + |
f (x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
所以,f (x)极小值为f (2)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303007368.png)
(Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a)
g ′(x)=3x2+2bx-(2b+4)+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303209329.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303032251020.png)
令p(x)=3x2+(2b+3)x-1,
(1)当 1<a≤2时,
f(x)的极小值点x=a,则g(x)的极小值点也为x=a,
所以pA=0,
即3a2+(2b+3)a-1=0,
即b=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303241655.png)
此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b
=-3+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303256664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303256658.png)
由于1<a≤2,
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303256658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303303362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303319214.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303334294.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303303362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302991341.png)
(2)当0<a<1时,
f(x)的极小值点x=1,则g(x)的极小值点为x=1,
由于p(x)=0有一正一负两实根,不妨设x2<0<x1,
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303381361.png)
此时g(x)的极大值点x=x1,
有 g(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1 (x12-2x1<0)
<-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303381361.png)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303381361.png)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303381361.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303443312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303459331.png)
≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030303459338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302991341.png)
综上所述,g(x)的极大值小于等于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030302991341.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目