题目内容
(12分)已知在数列
中,
,
是其前
项和,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740977803.png)
(I)求
;(II)证明:数列
是等差数列;
(III)令
,记数列
的前
项和为
.求证:当
时,
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740868480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740884485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740915388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740946297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740977803.png)
(I)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740993439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741024800.png)
(III)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741040771.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741071487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740946297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741102373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741133437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157411651149.png)
(I)
;(II)见解析; (III)见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741180797.png)
(1)令
,代入
可求出
;
(2)
代入
整理得
,所以数列
是等差数列;
(3)由(1),(2)可求得
,
。所以
。当
时,
;两边平方整理得
。叠加得
,放缩求得
,即证得结论。
(I)
;
(II)由条件可得
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741539871.png)
两边同除以
,得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741321830.png)
所以:数列
成等差数列,且首项和公差均为1
(III)由(Ⅰ)可得:
,
,代入
可得
,所以
,
.
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157414301036.png)
平方则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157417891439.png)
叠加得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418041781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418201676.png)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418511435.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418671016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418981178.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741196533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740977803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740993439.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741274721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740977803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741321830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741024800.png)
(3)由(1),(2)可求得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741352749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741383537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741399858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741133437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157414301036.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741461922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157414771647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741492876.png)
(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741180797.png)
(II)由条件可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741523929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741539871.png)
两边同除以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741570494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741321830.png)
所以:数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741024800.png)
(III)由(Ⅰ)可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741617651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741648663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215740977803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741352749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741383537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741399858.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215741133437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157414301036.png)
平方则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157417891439.png)
叠加得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418041781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418201676.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418511435.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418671016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157418981178.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目