题目内容

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
(1) t=1    (2) Tn=+

解:(1)∵点(Sn,an+1)在直线y=3x+1上,
∴an+1=3Sn+1,an=3Sn-1+1(n>1),
an+1-an=3(Sn-Sn-1)=3an,
∴an+1=4an,
a2=3S1+1=3a1+1=3t+1,
∴当t=1时,a2=4a1,数列{an}是等比数列.
(2)在(1)的结论下,an+1=4an,an+1=4n,
bn=log4an+1=n,
cn=an+bn=4n-1+n,
Tn=c1+c2+…+cn
=(40+1)+(41+2)+…+(4n-1+n)
=(1+4+42+…+4n-1)+(1+2+3+…+n)
=+.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网