ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C1£º
+
=1(a£¾b£¾0)µÄÀëÐÄÂÊΪ
£¬Ò»¸ö½¹µã×ø±êΪF(-
£¬0)£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©µãNÊÇÍÖÔ²µÄ×󶥵㣬µãPÊÇÍÖÔ²C1Éϲ»Í¬ÓÚµãNµÄÈÎÒâÒ»µã£¬Á¬½Ó
NP²¢ÑÓ³¤½»ÍÖÔ²ÓÒ×¼ÏßÓëµãT£¬Çó
µÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèÇúÏßC2£ºy=x2-1ÓëyÖáµÄ½»µãΪM£¬¹ýM×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±ÏßÓëÇúÏßC2¡¢ÍÖÔ²C1ÏཻÓÚµãA¡¢DºÍB¡¢E£¬£¨Èçͼ£©£¬¼Ç¡÷MAB¡¢
¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£¬µ±
=
ʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£®
x2 |
a2 |
y2 |
b2 |
| ||
2 |
3 |
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©µãNÊÇÍÖÔ²µÄ×󶥵㣬µãPÊÇÍÖÔ²C1Éϲ»Í¬ÓÚµãNµÄÈÎÒâÒ»µã£¬Á¬½Ó
NP²¢ÑÓ³¤½»ÍÖÔ²ÓÒ×¼ÏßÓëµãT£¬Çó
TP |
NP |
£¨3£©ÉèÇúÏßC2£ºy=x2-1ÓëyÖáµÄ½»µãΪM£¬¹ýM×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±ÏßÓëÇúÏßC2¡¢ÍÖÔ²C1ÏཻÓÚµãA¡¢DºÍB¡¢E£¬£¨Èçͼ£©£¬¼Ç¡÷MAB¡¢
¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£¬µ±
S1 |
S2 |
27 |
64 |
·ÖÎö£º£¨1£©ÏÈÀûÓÃÀëÐÄÂʺͽ¹µã×ø±ê£¬µÃµ½Ò»¸ö¹ØÓÚ²ÎÊýµÄ·½³Ì×飬½âÕâ¸ö·½³Ì×é¼´¿ÉÇó³ö²ÎÊý£¬½ø¶øÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨2£©ÓÉÌâÉèÌõ¼þÐÐÇó³öN£¨-2£¬0£©£¬ÍÖÔ²ÓÒ×¼Ïߣºx=
£¬ÉèP£¨x£¬y£©£¬Ôò
=
£¬ÔÙÓÉ-2¡Üx¡Ü2£¬ÄÜÇó³ö
µÄÈ¡Öµ·¶Î§£®
£¨3£©ÏÈ°ÑÖ±ÏßMAµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃµãAµÄ×ø±ê£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|MA|£¬Í¬ÑùµÄ·½·¨Çó³ö|MB|½ø¶øÇó³öS1£¬Í¬Àí¿ÉÇóS2£®ÔÙ´úÈëÒÑÖª¾Í¿ÉÖªµÀÊÇ·ñ´æÔÚÖ±ÏßlÂú×ãÌâÖÐÌõ¼þÁË£®
£¨2£©ÓÉÌâÉèÌõ¼þÐÐÇó³öN£¨-2£¬0£©£¬ÍÖÔ²ÓÒ×¼Ïߣºx=
4
| ||
3 |
TP |
NP |
| ||||
x+2 |
TP |
NP |
£¨3£©ÏÈ°ÑÖ±ÏßMAµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃµãAµÄ×ø±ê£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|MA|£¬Í¬ÑùµÄ·½·¨Çó³ö|MB|½ø¶øÇó³öS1£¬Í¬Àí¿ÉÇóS2£®ÔÙ´úÈëÒÑÖª¾Í¿ÉÖªµÀÊÇ·ñ´æÔÚÖ±ÏßlÂú×ãÌâÖÐÌõ¼þÁË£®
½â´ð£º½â£º£¨1£©¡ßÍÖÔ²C1£º
+
=1(a£¾b£¾0)µÄÀëÐÄÂÊΪ
£¬
Ò»¸ö½¹µã×ø±êΪF(-
£¬0)£¬
¡à
£¬
¡àa=2£¬c=
£¬b=
=1£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ£º
+y2=1£®
£¨2£©¡ßNÊÇÍÖÔ²C1£º
+y2=1µÄ×󶥵㣬µãPÊÇÍÖÔ²C1Éϲ»Í¬ÓÚµãNµÄÈÎÒâÒ»µã£¬
¡àN£¨-2£¬0£©£¬ÍÖÔ²ÓÒ×¼Ïߣºx=
£¬
ÉèP£¨x£¬y£©£¬Ôò
=
£¬
¡ß-2¡Üx¡Ü2£¬
¡à
=
¡Ê[
£¬+¡Þ£©£®
¹Ê
µÄÈ¡Öµ·¶Î§ÊÇ[
£¬+¡Þ£©£®
£¨3£©ÉèÖ±ÏßMAµÄбÂÊΪk1£¬ÔòÖ±ÏßMAµÄ·½³ÌΪy=k1x-1£®
ÓÉ
£¬½âµÃ
£¬»ò
£®
ÔòµãAµÄ×ø±êΪ£¨k1£¬k12-1£©£®
ÓÖÖ±ÏßMBµÄбÂÊΪ-
£¬Í¬Àí¿ÉµÃµãBµÄ×ø±êΪ£¨-
£¬
-1£©£®
ÓÚÊÇS1=
|MA|•|MB|=
•|k1|•
•|-
|=
£®
ÓÉ
£¬µÃ£¨1+4k12£©x2-8k1x=0£®
½âµÃ
£¬»ò
£¬ÔòµãDµÄ×ø±êΪ£¨
£¬
£©£®
ÓÖÖ±ÏßMEµÄбÂÊΪ-
£®Í¬Àí¿ÉµÃµãEµÄ×ø±êΪ£¨
£¬
£©£®
ÓÚÊÇS2=
|MD|•|ME|=
£®
¹Ê
=
(4k12+
+17)=
£¬½âµÃk12=2£¬»òk12=
£®
ÓÖÓɵãA£¬BµÄ×ø±êµÃ£¬k=
=k1-
£®ËùÒÔk=¡À
£®
¹ÊÂú×ãÌõ¼þµÄÖ±Ïß´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³ÌΪy=
xºÍy=-
x£®
x2 |
a2 |
y2 |
b2 |
| ||
2 |
Ò»¸ö½¹µã×ø±êΪF(-
3 |
¡à
|
¡àa=2£¬c=
3 |
4-3 |
¡àÍÖÔ²C1µÄ·½³ÌΪ£º
x2 |
4 |
£¨2£©¡ßNÊÇÍÖÔ²C1£º
x2 |
4 |
¡àN£¨-2£¬0£©£¬ÍÖÔ²ÓÒ×¼Ïߣºx=
4
| ||
3 |
ÉèP£¨x£¬y£©£¬Ôò
TP |
NP |
| ||||
x+2 |
¡ß-2¡Üx¡Ü2£¬
¡à
TP |
NP |
| ||||
x+2 |
2
| ||
6 |
¹Ê
TP |
NP |
2
| ||
6 |
£¨3£©ÉèÖ±ÏßMAµÄбÂÊΪk1£¬ÔòÖ±ÏßMAµÄ·½³ÌΪy=k1x-1£®
ÓÉ
|
|
|
ÔòµãAµÄ×ø±êΪ£¨k1£¬k12-1£©£®
ÓÖÖ±ÏßMBµÄбÂÊΪ-
1 |
k1 |
1 |
k1 |
1 |
k12 |
ÓÚÊÇS1=
1 |
2 |
1 |
2 |
1+k12 |
1+
|
1 |
k1 |
1+k12 |
2|k1| |
ÓÉ
|
½âµÃ
|
|
8k1 |
1+4k12 |
4k12-1 |
1+4k12 |
ÓÖÖ±ÏßMEµÄбÂÊΪ-
1 |
k1 |
-8k1 |
1+4k12 |
4-k12 |
4+k12 |
ÓÚÊÇS2=
1 |
2 |
32(1+k12)•|k1| |
(1+4k12)(k12+4) |
¹Ê
S1 |
S2 |
1 |
64 |
4 |
k12 |
27 |
64 |
1 |
2 |
ÓÖÓɵãA£¬BµÄ×ø±êµÃ£¬k=
k12-
| ||
k1+
|
1 |
k1 |
| ||
2 |
¹ÊÂú×ãÌõ¼þµÄÖ±Ïß´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³ÌΪy=
| ||
2 |
| ||
2 |
µãÆÀ£º±¾ÌâÊǶÔÍÖÔ²ÓëÅ×ÎïÏßÒÔ¼°Ö±ÏßÓëÅ×ÎïÏߺÍÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌâµÄ¿¼²é£®ÊÇÒ»µÀÕûÀí¹ý³ÌºÜÂé·³µÄÌ⣬ÐèÒªÒªÈÏÕ棬ϸÖµÄ̬¶È²ÅÄÜ°ÑÌâÄ¿×÷ºÃ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿