题目内容
【题目】已知数列{an}的前n项和 ,其中n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和Tn;
(Ⅲ)若对于任意正整数n,都有 ,求实数λ的最小值.
【答案】解:(Ⅰ)当n=1时,a1=S1=﹣3;
当n≥2时,an=Sn﹣Sn﹣1=n2﹣4n﹣(n﹣1)2+4(n﹣1)=2n﹣5,
因为a1=﹣3符合上式,
所以an=2n﹣5(n∈N*).
(Ⅱ)由(Ⅰ)得 .
所以Tn=b1+b2+…+bn=(2﹣3+1)+(2﹣1+1)+…+(22n﹣5+1)
=(2﹣3+2﹣1+…+22n﹣5)+n
= = .
(Ⅲ)
= = ,
当n=1时, ,(注:此时 ),
当n≥2时,因为 ,
所以 .
则n=1时,取得最大值.
因为对于任意正整数n,都有 ,
由题意,得 ;
所以λ的最小值为 .
【解析】(Ⅰ)由数列的递推式:当n=1时,a1=S1;当n≥2时,an=Sn﹣Sn﹣1,计算即可得到所求通项;(Ⅱ)由(Ⅰ)得 .运用数列的求和方法:分组求和,结合等比数列的求和公式,计算即可得到所求和;(Ⅲ)运用数列的求和方法:裂项相消求和,化简整理,判断数列的最值,再由恒成立思想,即可得到所求实数λ的最小值.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
【题目】从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:
质量指标 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
频数 | 6 | 26 | 38 | 22 | 8 |
则样本的该项质量指标值落在[105,125]上的频率为 .