题目内容

(本小题9分)设直线3x+y+=0与圆x2+y2+x-2y=0相交于P、Q两点,O为坐标原点,若OPOQ,求的值.
解:由3x+y+m=0得: y=-3x-m 代入圆方程得:
设P、Q两点坐标为P(x1,y1)、Q(x2,y2)  则x1 +x2  x1×x2
∵OP⊥OQ  ∴  即x1×x2+ y1×y2=0∴ x1×x2+(-3x1-m) (-3x2-m) =0
整理得:10x1×x2+3 m (x1 +x2)+ m2="0   " ∴  
解得:m=0或m=      又△=(6m+7)2-40(m2+2m)= -4m2+4m+49
当m=0时,△>0;当m=时,△>0;∴m=0或m=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网