题目内容
(Ⅰ)已知z∈C,且|z|-i=
+2+3i(i为虚数单位),求复数
的虚部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且
为纯虚数,求实数a的值.
. |
z |
z |
2+i |
(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且
z1 |
z2 |
分析:(Ⅰ)设z=x+yi,代入方程|z|-i=
+2+3i,整理后利用复数相等的概念求出引入的参数x,y的值,即可求得复数z,再求出复数
确定其虚部.
(Ⅱ)将
化为代数形式,再令其实部为0,虚部不为0即可
. |
z |
z |
2+i |
(Ⅱ)将
z1 |
z2 |
解答:解:(Ⅰ)设z=x+yi,代入方程|z|-i=
+2+3i,得出
-i=x-yi+2+3i=(x+2)+(3-y)i,
故有
,解得
,
∴z=3+4i,复数
=
=2+i,虚部为1
(Ⅱ)
=
=
,且
为纯虚数则3a-8=0,且4a+6≠0,解得a=
. |
z |
x2+y2 |
故有
|
|
∴z=3+4i,复数
z |
2+i |
3+4i |
2+i |
(Ⅱ)
z1 |
z2 |
a+2i |
3-4i |
3a-8+(4a+6)i |
25 |
z1 |
z2 |
8 |
3 |
点评:本题考查了复数中的基本知识和计算:纯虚数、实部、虚部的概念,复数的加减乘除混合运算.属于基础题.
练习册系列答案
相关题目