题目内容
(本小题满分12分)
已知数列
的前
项和为
满足:
(
为常数,且
)
(1)若
,求数列
的通项公式
(2)设
,若数列
为等比数列,求
的值.
(3)在满足条件(2)的情形下,设
,数列
前
项和为
,求证![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211052709.png)
已知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210771481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210787297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210803388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210818779.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210849289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210865505.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210881396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210771481.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210927773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210943494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210849289.png)
(3)在满足条件(2)的情形下,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210974742.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210990445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210787297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211021373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211052709.png)
(1)
;(2)
.(3)证明:由(2)知
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042111301272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042111461112.png)
, 由
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211208841.png)
所以
,从而![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042112392078.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042112711390.png)
.
即
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211068492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211083443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211099618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042111301272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042111461112.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211161811.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211193805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211208841.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042112241206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042112392078.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042112711390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211286911.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211302683.png)
试题分析:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004210881396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211333616.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211364357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211489597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211505477.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211520437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211333616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211551682.png)
两式相减得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211567580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211583512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211598589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211068492.png)
(2)由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042116451459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211661440.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211676545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042116921091.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211707921.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211083443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211083443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211770456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211083443.png)
(3)证明:由(2)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211099618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042111301272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042120041086.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211161811.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211193805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211208841.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042120821194.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042120972064.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042121131348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211286911.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004211302683.png)
点评:解决数列的前n项和的方法一般有:公式法、倒序相加法、错位相减法、分组求和法、裂项法等,要求学生掌握几种常见的裂项比如
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240042121601139.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目