题目内容

【题目】已知数列{an}是首项为1的单调递增的等比数列,且满足a3 成等差数列.
(1)求{an}的通项公式;
(2)若bn=log3(anan+1)(n∈N*),求数列{anbn}的前n项和Sn

【答案】
(1)解:设等比数列{an}公比为q>1,∵a3 成等差数列.

a4=a3+a5,化为:3q2﹣10q+3=0,解得q=3.∴an=3n1


(2)解:bn=log3(anan+1)= =2n﹣1,

∴anbn=(2n﹣1)3n1

∴数列{anbn}的前n项和Sn=1+3×3+5×32+…+(2n﹣1)3n1

3Sn=3+3×32+5×33+…+(2n﹣3)3n1+(2n﹣1)3n

∴﹣2Sn=1+2(3+32+…+3n1)﹣(2n﹣1)3n=1+2× ﹣(2n﹣1)3n=(2﹣2n)3n﹣2,

∴Sn=1+(n﹣1)3n


【解析】(1)设等比数列{an}公比为q>1,由a3 成等差数列.可得 a4=a3+a5 , 化为:3q2﹣10q+3=0,解得q即可得出.(2)bn=log3(anan+1)= =2n﹣1,可得anbn=(2n﹣1)3n1 . 利用“错位相减法”与等比数列的求和公式即可得出.
【考点精析】通过灵活运用等比数列的通项公式(及其变式)和数列的前n项和,掌握通项公式:;数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网