题目内容
【题目】已知为椭圆上三个不同的点,若坐标原点为的重心,则的面积为( )
A.B.C.D.
【答案】C
【解析】
设,,,到直线的距离为,分直线斜率不存在与存在两种情况讨论:斜率不存在时,求出与,计算的面积;斜率存在时,设直线:,联立消元,应用韦达定理得到与,化简表示出与,将点坐标代入椭圆方程得到,计算的面积.综合两种情况,可得答案.
设,,,记到直线的距离为,
为的重心,
,,
①当直线斜率不存在时,根据椭圆对称性可知,,,则,
由为的重心知,,,则或,
,,,
,
②当直线斜率存在时,设直线:,易知,
联立方程,
消去得,
化简整理得,,
,
由韦达定理得,,,
,
,
为的重心,
,
,
,
到直线的距离为,
将点代入椭圆方程得,,
整理得,,
,
的面积为,
综上所述,的面积恒为.
故选:C.
【题目】2019年12月1日起郑州市施行《郑州市城市生活垃圾分类管理办法》,郑州将正式进入城市生活垃圾分类时代.为了增强社区居民对垃圾分类知识的了解,积极参与到垃圾分类的行动中,某社区采用线下和线上相结合的方式开展了一次200名辖区成员参加的“垃圾分类有关知识”专题培训.为了了解参训成员对于线上培训、线下培训的满意程度,社区居委会随机选取了40名辖区成员,将他们分成两组,每组20人,分别对线上、线下两种培训进行满意度测评,根据辖区成员的评分(满分100分)绘制了如图所示的茎叶图.
(1)根据茎叶图判断辖区成员对于线上、线下哪种培训的满意度更高,并说明理由.
(2)求这40名辖区成员满意度评分的中位数,并将评分不超过、超过分别视为“基本满意”“非常满意”两个等级.
(ⅰ)利用样本估计总体的思想,估算本次培训共有多少辖区成员对线上培训非常满意;
(ⅱ)根据茎叶图填写下面的列联表.
基本满意 | 非常满意 | 总计 | |
线上培训 | |||
线下培训 | |||
总计 |
并根据列联表判断能否有99.5%的把握认为辖区成员对两种培训方式的满意度有差异?
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
,其中.