题目内容
【题目】某著名歌星在某地举办一次歌友会,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥ ,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不获得特等奖奖金.
(1)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(2)设特等奖奖金为a元,小李是此次活动的顾客,求小李参加此次活动获益的期望;若该歌友会组织者在此次活动中获益的期望值是至少获得70000元,求a的最大值.
【答案】
(1)解:(Ⅰ)由题意知作图如下,
,
结合图象可知,阴影内的面积S= × ×4=5,
故小明在第二轮抽奖中获奖的概率P= ;
(2)解:由题意,
E(X)=1000× +a× × =10+ ;
故100000﹣1000×10﹣10× ×a≥70000,
即a≤6400,
故a的最大值为6400.
【解析】(1)由题意知可化为几何概率模型求解,从而作图求得;(2)易知E(X)=1000× +a× × =10+ ;100000﹣1000×10﹣10× ×a≥70000,从而再解出a的最大值.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.