题目内容
【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
【答案】
(1)解:记抽到的卡片标号为(x,y),所有的情况分别为,
(x,y) | (1,1) | (1,2) | (1,3) | (2,1) | (2,2) | (2,3) | (3,1) | (3,2) | (3,3) |
P(x﹣2,x﹣y) | (﹣1,0) | (﹣1,﹣1) | (﹣1,﹣2) | (0,1) | (0,0) | (0,﹣1) | (1,2) | (1,1) | (1,0) |
|OP| | 1 | 1 | 0 | 1 | 1 |
共9种.由表格可知|OP|的最大值为
设事件A为“|OP|取到最大值”,则满足事件A的(x,y)有(1,3),(3,1)两种情况,
∴
(2)解:设事件B为“P点在第一象限”
若 ,其所表示的区域面积为3×3=9,
由题意可得事件B满足 ,
即如图所示的阴影部分,
其区域面积为
∴
【解析】(1)记先后抽到的两张卡片的标号为(x,y),列出所有情形,然后分别求出|OP|的值,从而得到最大值;(2)求出点P落在第一象限所构成区域的面积,然后求出基本事件空间所表示的区域的面积,计算出二者的比值即可.
【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:
题号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:
(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;
(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;
(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用和设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.