题目内容
(本题满分14分)
已知
是函数
的一个极值点,且函数
的图象在
处的切线的斜率为2
.
(Ⅰ)求函数
的解析式并求单调区间.(5分)
(Ⅱ)设
,其中
,问:对于任意的
,方程![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122768442.png)
在区间
上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.(9分)
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122612367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001226281046.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122644447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122659383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122675330.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122644447.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122722747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122737643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122753469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122768442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122784729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
(I)
,单调增区间是
,单调减区间是
;
(Ⅱ)对于任意的
,方程![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122909453.png)
在区间
上均有实数根且当
时,有唯一的实数解;当
时,有两个实数解。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122831822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122846654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122878428.png)
(Ⅱ)对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122753469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122909453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122784729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123049713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123065485.png)
试题分析:(Ⅰ)由x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,f′(0)=0,得到关于a,b的一个方程,函数f(x)的图象在x=2处的切线的斜率为2e2,f′(2)=2e2;得到一个关于a,b的一个方程,解方程组求出a,b即可;
(Ⅱ)把求得的f′(x)代入g(x),方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根,转化为求函数g(x)在区间(-2,m)上的单调性、极值、最值问题.
解:(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001230961076.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123112765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123127974.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123143809.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123174844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123190399.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123205822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123236390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123252358.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123268820.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123283435.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122831822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122846654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122878428.png)
(Ⅱ)解:假设方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122909453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122784729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123408324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122909453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123439714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123517929.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001235331041.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001235331041.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001235801346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001235951331.png)
所以 ①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123611706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123626765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123642552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123065485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123689841.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001237041016.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123642552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123751386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123767907.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123642552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123829424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001238451101.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123642552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123876503.png)
综上, 对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122753469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122909453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122784729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000122815546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123049713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000123065485.png)
点评:解决该试题的关键是方程根的个数问题转化为求函数的最值问题,并能利用导数的几何意义求解切线方程问题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目