题目内容
【题目】把函数的图象向右平移一个单位,所得图象与函数的图象关于直线对称;已知偶函数满足,当时,;若函数有五个零点,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】分析:由题意分别确定函数f(x)的图象性质和函数h(x)图象的性质,然后数形结合得到关于k的不等式组,求解不等式组即可求得最终结果.
详解:曲线右移一个单位,得,
所以g(x)=2x,h(x-1)=h(-x-1)=h(x+1),则函数h(x)的周期为2.
当x∈[0,1]时,,
y=kf(x)-h(x)有五个零点,等价于函数y=kf(x)与函数y=h(x)的图象有五个公共点.
绘制函数图像如图所示,由图像知kf(3)<1且kf(5)>1,即:
,求解不等式组可得:.
即的取值范围是。
本题选择C选项.
练习册系列答案
相关题目
【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.