题目内容
【题目】已知椭圆的左、右焦点分别为、,圆经过椭圆的两个焦点和两个顶点,点在椭圆上,且,.
(Ⅰ)求椭圆的方程和点的坐标;
(Ⅱ)过点的直线与圆相交于、两点,过点与垂直的直线与椭圆相交于另一点,求的面积的取值范围.
【答案】(Ⅰ)椭圆的方程为, 点P的坐标为.(Ⅱ).
【解析】分析:(I)由题意计算可得, , 则椭圆的方程为, 结合几何性质可得点P的坐标为.
(II)由题意可知直线l2的斜率存在,设l2的方程为,与椭圆方程联立可得, 由弦长公式可得; 结合几何关系和勾股定理可得, 则面积函数, 换元求解函数的值域可得△ABC的面积的取值范围是.
详解:(I)设,,
可知圆经过椭圆焦点和上下顶点,得,
由题意知,得,
由,得,
所以椭圆的方程为,
点P的坐标为.
(II)由过点P的直线l2与椭圆相交于两点,知直线l2的斜率存在,
设l2的方程为,由题意可知,
联立椭圆方程,得,
设,则,得,
所以;
由直线l1与l2垂直,可设l1的方程为,即
圆心到l1的距离,又圆的半径,
所以,
,
由即,得,
,
设,则,,
当且仅当即时,取“=”,
所以△ABC的面积的取值范围是.
【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.
(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表
使用堆沤肥料(千克) | 2 | 4 | 5 | 6 | 8 |
产量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?
(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);
前8小时内的销售量(单位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.
附:回归直线方程为,其中.