题目内容
【题目】如图,由三棱柱和四棱锥构成的几何体中, 平面, , , ,平面平面.
(Ⅰ)求证: ;
(Ⅱ)若为棱的中点,求证: 平面;
(Ⅲ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.
【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)不存在这样的点.
【解析】试题分析: (Ⅰ)在直三棱柱中,由平面,推得,
由平面平面,推得平面,又平面,得证.(Ⅱ)如图建立空间直角坐标系,写出各点坐标,求出平面的法向量为,因为, 所以平面.(Ⅲ)设, ,根据线面角公式列出方程,解得,可得结论.
试题解析:(Ⅰ)证明:在直三棱柱中, 平面,
故,
由平面平面,且平面 平面,
所以平面,
又平面,
所以.
(Ⅱ)证明:在直三棱柱中, 平面,
所以, ,
又,
所以,如图建立空间直角坐标系,
依据已知条件可得, , , , , ,
所以, ,
设平面的法向量为,
由即
令,则, ,于是,
因为为中点,所以,所以,
由,可得,
所以与平面所成角为0,
即平面.
(Ⅲ)解:由(Ⅱ)可知平面的法向量为.
设, ,
则, .
若直线与平面成角为,则
,
解得,
故不存在这样的点.
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).