题目内容
【题目】设数集由实数构成,且满足:若(且),则.
(1)若,试证明中还有另外两个元素;
(2)集合是否为双元素集合,并说明理由;
(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.
【答案】(1) ,;(2)见解析;(3).
【解析】
(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;
(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;
(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.
(1)证明:若x∈A,则
又∵2∈A,
∴
∵-1∈A,∴
∴A中另外两个元素为,;
(2),,,且,,
,故集合中至少有3个元素,∴不是双元素集合;
(3)由,,可得
,所有元素积为1,∴,
、、,∴.
练习册系列答案
相关题目