题目内容
【题目】已知四棱锥S﹣ABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点 E.若SA=AB=3,则△SED面积的最小值为_____.
【答案】
【解析】
设BE=x,EC=y,则BC=AD=x+y,推导出SA⊥ED,ED⊥平面SAE,ED⊥SE,AE=,ED=,推导出,SE= ,ED=,从而S△SED=×SE×ED=由此能求出SED面积的最小值.
解:设BE=x,EC=y,则BC=AD=x+y,
∵SA⊥平面ABCD,ED平面ABCD,
∴SA⊥ED,
∵AE⊥ED,SA∩AE=A,∴ED⊥平面SAE,
∴ED⊥SE,
由题意得AE=,ED=,
在Rt△AED中,AE2+ED2=AD2,
∴x2+3+y2+3=(x+y)2,化简,得xy=3,
在Rt△SED中,SE=,ED==,
∴S△SED==,
∵3x2+≥2=36,
当且仅当x=,
时,等号成立,
∴=,
∴△SED面积的最小值为,
故答案为:.
【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以,,,,,(单位:度)分组的频率分布直方图如下图:
若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:
月平均用电量(度) | ||||||
使用峰谷电价的户数 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)()将“一般用户”和“大用户”的户数填入下面的列联表:
一般用户 | 大用户 | |
使用峰谷电价的用户 | ||
不使用峰谷电价的用户 |
()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,