题目内容
【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.
【答案】
(1)解:f(x)为“局部奇函数”等价于关于x的方程f(﹣x)=﹣f(x)有解.
当f(x)=ax2+2x﹣4a(a∈R)时,
方程f(﹣x)=﹣f(x)即2a(x2﹣4)=0,有解x=±2,
所以f(x)为“局部奇函数”
(2)解:当f(x)=2x+m时,f(﹣x)=﹣f(x)可化为2x+2﹣x+2m=0,
因为f(x)的定义域为[﹣1,1],所以方程2x+2﹣x+2m=0在[﹣1,1]上有解.
令t=2x,t∈[ ,2],则﹣2m=t+
设g(t)=t+ ,则g'(t)=1﹣ = ,
当t∈(0,1)时,g'(t)<0,故g(t)在(0,1)上为减函数,
当t∈(1,+∞)时,g'(t)>0,故g(t)在(1,+∞)上为增函数.
所以t∈[ ,2]时,g(t)∈[2, ].
所以﹣m∈[2, ],即m∈[﹣ ,﹣1]
【解析】(1)若f(x)为“局部奇函数”,则根据定义验证条件是否成立即可;(2)利用局部奇函数的定义,求出使方程f(﹣x)=﹣f(x)有解的实数m的取值范围,可得答案.
【考点精析】通过灵活运用二次函数的性质,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减即可以解答此题.
【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
房屋面积() | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,