题目内容

【题目】已知:函数f(x)=loga(2+x)﹣loga(2﹣x)(a>0且a≠1)
(Ⅰ)求f(x)定义域;
(Ⅱ)判断f(x)的奇偶性,并说明理由;
(Ⅲ)求使f(x)>0的x的解集.

【答案】解:(Ⅰ)由题意得 ,即﹣2<x<2.∴f(x)的定义域为(﹣2,2);
(Ⅱ)∵对任意的x∈(﹣2,2),﹣x∈(﹣2,2)
f(﹣x)=loga(2﹣x)﹣loga(2+x)=﹣f(x),
∴f(x)=loga(2+x)﹣loga(2﹣x)是奇函数;
(Ⅲ)f(x)=loga(2+x)﹣loga(2﹣x)>0,即log2(2+x)>loga(2﹣x),
∴当a∈(0,1)时,可得2+x<2﹣x,即﹣2<x<0.
当a∈(1,+∞)时,可得2+x>2﹣x,即x∈(0,2)
【解析】(Ⅰ)利用对数函数的性质列出不等式求解函数的定义域.(Ⅱ)利用函数的奇偶性的定义判断即可.(Ⅲ)利用对数函数的单调性求解不等式即可.
【考点精析】本题主要考查了函数的奇偶性和对数的运算性质的相关知识点,需要掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称;①加法:②减法:③数乘:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网