题目内容

【题目】设函数f(x)的定义域为D,若存在闭区间[a,b]D,使得函数f(x)满足:
①f(x)在[a,b]上是单调函数;
②f(x)在[a,b]上的值域是[2a,2b],则称区间[a,b]是函数f(x)的“和谐区间”.
下列结论错误的是(
A.函数f(x)=x2(x≥0)存在“和谐区间”
B.函数f(x)=2x(x∈R)存在“和谐区间”
C.函数f(x)= (x>0)不存在“和谐区间”
D.函数f(x)=log2x(x>0)存在“和谐区间”

【答案】D
【解析】解:A中,当x≥0时,f(x)=x2在[0,2]上是单调增函数,且f(x)在[0,2]上的值域是[0,4],∴存在“和谐区间”,原命题正确;
B中,当x∈R时,f(x)=2x在[1,2]上是单调增函数,且f(x)在[1,2]上的值域是[2,4],∴存在“和谐区间”,原命题正确;
C中,f(x)= (x>0)是单调减函数,且f(x)在[1,2]上的值域是[ ,1],∴不存在“和谐区间”,原命题正确;
D中,当x>0时,f(x)=log2x是单调增函数,假设存在[a,b]满足题意,则f(a)=2a,且f(b)=2b,即log2a=2a,且log2b=2b;
∴22a=a,且22b=b,即4a=a,且4b=b;这与函数的单调性矛盾,∴假设不成立,即函数不存在“和谐区间”,原命题不正确;
故选D.
【考点精析】认真审题,首先需要了解函数的值域(求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网