题目内容
14.已知$|{\vec a}|=|{\vec b}|=2,cos<\vec a,\vec b>={120°}$,则$\vec a•\vec b$的值为( )A. | 2 | B. | 4 | C. | -2 | D. | -4 |
分析 根据数量积的计算公式:$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos<\overrightarrow{a},\overrightarrow{b}>$进行计算即可.
解答 解:$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos120°=-2$.
故选:C.
点评 考查数量积的计算公式,注意cos120°=$-\frac{1}{2}$.
练习册系列答案
相关题目
9.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第1次前后排动物互换位置,第2次左右列互换座位,…这样交替进行下去,那么第2014次互换座位后,小兔的位置对应的是( )
A. | 编号1 (开始) | B. | 编号2 (第1次) | C. | 编号3 (第2次) | D. | 编号4(第3次) |
3.定义一种运算a?b=$\left\{\begin{array}{l}a,({a≤b})\\ b,({a>b})\end{array}$,令f(x)=(cos2x+sinx)?$\frac{3}{2}$,且x∈[-$\frac{π}{2},\frac{π}{2}}$],则函数f(x-$\frac{π}{2}}$)的最大值是( )
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{4}$ | D. | 1 |
4.已知函数f(x)=ax3-2x2+4x-7在(-∞,+∞)上既有极大值,也有极小值,则实数a的取值范围是( )
A. | a<$\frac{1}{3}$ | B. | a≤$\frac{1}{3}$ | C. | a<$\frac{1}{3}$且a≠0 | D. | a<$\frac{1}{3}$或a≠0 |