题目内容
在数列{an)中,已知a1=
(1)求证:{

(2)求数列{an}的通项公式an及它的前n项和Sn.
【答案】分析:(1)利用数列递推式,结合
-
,即可证得结论;
(2)确定数列的通项,利用错位相减法可求数列的和.
解答:(1)证明:∵an=3an-1+3n-1,
∴an-
=3(an-1-
)+3n,
∴
-
=
=1
∴{
}是等差数列,且公差为1;
(2)解:由(1){
}是等差数列,且公差为1,a1=
,
∴
=
+(n-1)×1=n,∴
∴Sn=(1×31+2×32+…+n•3n)+
令Tn=1×31+2×32+…+n•3n,①则
3Tn=1×32+2×33+…+n•3n+1,②
①-②:-2Tn=31+32+…+3n-n•3n+1=-
∴Tn=
∴Sn=
+
点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.


(2)确定数列的通项,利用错位相减法可求数列的和.
解答:(1)证明:∵an=3an-1+3n-1,
∴an-


∴



∴{

(2)解:由(1){


∴



∴Sn=(1×31+2×32+…+n•3n)+

令Tn=1×31+2×32+…+n•3n,①则
3Tn=1×32+2×33+…+n•3n+1,②
①-②:-2Tn=31+32+…+3n-n•3n+1=-

∴Tn=

∴Sn=


点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目