题目内容

(2012•邯郸模拟)在数列{an}中,已知an≥1,a1=1且an+1-
a
 
n
=
2
an+1+an-1
(n∈N*)

(I)求数列{an}的通项公式;
(II)令cn=(2an-1)2Sn=
1
c1c2
+
1
c2c3
+…+
1
cncn+1
,若Sn<k恒成立,求k的取值范围.
分析:(I)因为an+1-an=
2
an+1+an-1
,所以(an+1-
1
2
)2-(an-
1
2
)2=2
,令bn=(an-
1
2
)2
,则bn+1-bn=2,由此能求出数列{an}的通项公式.
(II)因为cn=(2an-1)2=8n-7,所以
1
cncn+1
=
1
(8n-7)(8n+1)
=
1
8
(
1
8n-7
-
1
8n+1
)
,故Sn=
1
c1c2
+
1
c2c3
+…+
1
cncn+1
=
1
8
(1-
1
9
+
1
9
-
1
17
+…+
1
8n-7
-
1
8n+1
)
=
1
8
(1-
1
8n+1
)<
1
8
,由Sn<k恒成立,能求出k的取值范围.
解答:解:(I)因为an+1-an=
2
an+1+an-1

所以an+12-an2-an+1+an=2,
(an+1-
1
2
)2-(an-
1
2
)2=2
,--(2分)
bn=(an-
1
2
)2

bn+1-bn=2,
故{bn}是以
1
4
为首项,2为公差的等差数列.
所以bn=
1
4
+2(n-1)=
8n-7
4
,--(4分)
因为an≥1,故an=
1+
8n-7
2
.--(6分)
(II)因为cn=(2an-1)2=8n-7,
所以
1
cncn+1
=
1
(8n-7)(8n+1)
=
1
8
(
1
8n-7
-
1
8n+1
)
,--(8分)
所以Sn=
1
c1c2
+
1
c2c3
+…+
1
cncn+1
=
1
8
(1-
1
9
+
1
9
-
1
17
+…+
1
8n-7
-
1
8n+1
)

=
1
8
(1-
1
8n+1
)<
1
8
,--(10分)
因为Sn<k恒成立,
k≥
1
8
.--(12分)
点评:本题考查数列的通项公式的求法和求实数k的取值范围,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网