题目内容

设有关于的一元二次方程
(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间[0,3]任取的一个数,是从区间[0,2]任取的一个数,求上述方程有实根的概率.

(1)        (2)

解析试题分析:(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.(4)在几何概型中注意区域是线段,平面图形,立体图形.
试题解析:解:设事件A为“方程x2+2ax+b2=0有实根”.
当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.
(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)=..6分
(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以所求的概率为P(A)=          12分
考点:(1)古典概型的概率;   (2)几何概型的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网