题目内容
【题目】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体 ,如图.
1若,证明:平面;
2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.
【答案】(1)证明见解析;(2) .
【解析】
1由正方形的性质推导出,结合,可得平面,由此,再由,能证明平面;2过作交于点,以为坐标原点,以分别为轴,轴,轴的正方向建立空间直角坐标系,设,可得,利用向量垂直数量积为零求出平面的法向量,利用空间向量夹角余弦公式能求出结果.
1由已知得四边形ABFE是正方形,且边长为2,在图2中,,
由已知得,,平面
又平面BDE,,
又,,平面
2在图2中,,,,即面DEFC,
在梯形DEFC中,过点D作交CF于点M,连接CE,
由题意得,,由勾股定理可得,则,,
过E作交DC于点G,可知GE,EA,EF两两垂直,
以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,
则,
.
设平面ACD的一个法向量为,
由得,取得,
设,则m,,,得
设CP与平面ACD所成的角为,
.
所以
练习册系列答案
相关题目
【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.
甲每天生产的次品数/件 | 0 | 1 | 2 | 3 | 4 |
对应的天数/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生产的次品数/件 | 0 | 1 | 2 | 3 |
对应的天数/天 | 30 | 25 | 25 | 20 |
(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出与的函数关系式;
(2)按这100天统计的数据,分别求甲、乙两名工人的平均日利润.