题目内容
已知数列中,,.
(1)证明数列是等比数列,并求数列的通项公式;
(2)记,求数列的前项和.
(1)证明过程详见解析,;(2).
解析试题分析:本题主要考查数列的通项公式和数列的求和问题.考查学生的分析问题解决问题的能力.第一问,属于配凑法,凑出等比数列,求通项公式;第二问,先用表达式和已知联立,化简,使表达式中出现减号,再累加求和,代入上一问的结果即可.
试题解析:(Ⅰ)由题意知:,,
∴;
又,∴数列是以为首项,2为公比的等比数列. 4分
∴,即; 6分
∴数列的通项公式为; 7分
(Ⅱ)由两边同取倒数可知,,即,
所以
或=
=; 10分
∴==. 13分
考点:1.等比数列的通项公式;2.累加法求和.
练习册系列答案
相关题目