题目内容
3.从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法有( )A. | 50种 | B. | 100种 | C. | 1275种 | D. | 2500种 | ||||
E. | 3500种 |
分析 根据题意,若每次取出2个数的和大于100,则两个数中至少有一个大于50,进而分两种情况讨论,①若取出的2个数都大于50,②若取出的2个数有一个小于或等于50,分别计算其所有的情况数目,进而由加法原理,计算可得答案.
解答 解:根据题意,若每次取出2个数的和大于100,则两个数中至少有一个大于50,
即可以分两种情况讨论,
①若取出的2个数都大于50,则有C502种.
②若取出的2个数有一个小于或等于50,
当取1时,另1个只能取100,有C11种取法;
当取2时,另1个只能取100或99,有C21种取法;
…
当取50时,另1个数只能取100,99,98,…,51中的一个,有C501种取法,
所以共有1+2+3+…+50=$\frac{50×51}{2}$.
综合①②可得,故取法种数为C502+$\frac{50×51}{2}$=2500,
故选:D
点评 本题考查分类加法计数原理的运用,注意分类后,寻找规律,避免大量运算,其次注意分类讨论要不重不漏.
练习册系列答案
相关题目