搜索
题目内容
(本题满分12分)
已知
,
,
,求
点的坐标,使四边形
为直角梯形.
试题答案
相关练习册答案
略
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
(本小题满分13分)
如图,已知菱形
的边长为
,
,
.将菱形
沿对角线
折起,使
,得到三棱锥
.
(Ⅰ)若点
是棱
的中点,求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设点
是线段
上一个动点,试确定
点的位置,使得
,并证明你的结论.
如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.
(本小题共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边中点,且CC1=2AB.
(1)(4′)求证:平面C1CD⊥平面ABC;
(2)(6′)求三棱锥D—CBB1的体积.
(本小题满分12分)
如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.
(1)求证:BC⊥平面PAC.
(2)求证:PB⊥平面AEF.
(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?
、如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1,SB=
.
(I)求证BC
SC; (II)求平
面SBC与平面ABCD所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小
((本小题满分12分)
若图为一简单组合体,其底面ABCD为正方形,PD
平面ABCD,EC//PD,且PD=2EC。
(1)求证:BE//平面PDA;
(2)若N为线段PB的中点,求证:EN
平面PDB;
(3)若
,求平面PBE与平面ABCD所成的二面角的大小。
本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,
CB⊥AB,AB=AD=
a,CD=
,点E,F分别为线段AB,CD的中点,则EF=" " .
(2)(选修4-4,坐标系与参数方程)在极坐标系(
)
中,曲线
的交点的极坐标为 .
(3)(选修4-1,不等式选讲)
已知函数
.若不等式
,则实数
的值为 .
( (本小题满分12分)
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.
(1)、求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);
(2)、求点P到平面ABD1的距离.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总