题目内容

【题目】某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如下直方图:

年级名次/是否近视

1-50

951-1000

近视

41

32

不近视

9

18

(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如上述表格中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系;

(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.

附:

0.10

0.05

0.025

0.010

0.005

k

2.706

3.841

5.024

6.635

7.879

【答案】;(;()分布列见解析,

【解析】

试题()先利用可得第一、二组的频率,由已知条件可得第三、六组的频率,进而可得视力在5.0以下的频率,再利用可得全年级视力在5.0以下的人数;()先算出的值,再与表中的数据比较即可得在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系;()先分析确定随机变量的所有可能取值,再计算各个取值的概率即可得的分布列,进而利用数学期望公式即可得数学期望.

试题解析:()设各组的频率为

依题意,前三组的频率成等比数列,后四组的频率成等差数列,故

1

所以由2

所以视力在5.0以下的频率为1-0.17=0.833

故全年级视力在5.0以下的人数约为4

6

因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系. 7

)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人, 8

可取0,1,2,3

X的分布列为

X

0

1

2

3

P





X的数学期望12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网